影像设备

传统的临床超声波成像设备需要经过专业培训的医师操作,且通常限于医院和诊所使用。这些设备不便于移动,且无法实现连续监测。为了解决这些问题,研究者们开始探索将超声波成像技术与可穿戴设备结合的可能性,以实现全身体、连续的可穿戴超声波监测。
现代可穿戴设备,如Fitbit和Apple Watch,不仅能够追踪日常活动量、监测心率,甚至能够执行曾经需要专业医疗环境支持的心电图检查。这些设备通过提供易于理解的生物指标数据,鼓励人们采取更健康的生活方式。此外,可穿戴式血糖监测器已经为糖尿病患者提供了持续的血糖读数,减少了频繁的针刺需求。
特别是超声波成像,它基于声纳的原理,通过发送高频声波进入身体并从内部结构反射回来,产生实时的动态过程图像,如心脏跳动或血液流动。
可穿戴, 成像
传统的临床超声波成像设备需要经过专业培训的医师操作,且通常限于医院和诊所使用。这些设备不便于移动,且无法实现连续监测。为了解决这些问题,研究者们开始探索将超声波成像技术与可穿戴设备结合的可能性,以实现全身体、连续的可穿戴超声波监测。
现代可穿戴设备,如Fitbit和Apple Watch,不仅能够追踪日常活动量、监测心率,甚至能够执行曾经需要专业医疗环境支持的心电图检查。这些设备通过提供易于理解的生物指标数据,鼓励人们采取更健康的生活方式。此外,可穿戴式血糖监测器已经为糖尿病患者提供了持续的血糖读数,减少了频繁的针刺需求。
特别是超声波成像,它基于声纳的原理,通过发送高频声波进入身体并从内部结构反射回来,产生实时的动态过程图像,如心脏跳动或血液流动。
可穿戴, 成像

DD insight: 能够在床旁就进行快速脑灌注评估以诊断/监测脑血管疾病(首先是中风),理想情况是增加了血管介入手术的渗透率,降低了CT/MRI的检测费用。
超声
DD insight: 能够在床旁就进行快速脑灌注评估以诊断/监测脑血管疾病(首先是中风),理想情况是增加了血管介入手术的渗透率,降低了CT/MRI的检测费用。
超声

在医疗领域内窥镜中,景深这个参数尤为重要。例如,在腹腔镜呈现的图像上通过适配器光圈焦距的调节,能给主任医师显示出更加完美了解手术中病患位置的情况。景深(depth of field)是指在摄影机或其他的成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。我们伸手将五指张开,将自己的大拇指朝自己伸到眼前,此时你会发现你眼睛聚焦到拇指的时候,后面看不清的手指都虚化掉了,你所能看清楚的地方就是景深。
光学, 设计
在医疗领域内窥镜中,景深这个参数尤为重要。例如,在腹腔镜呈现的图像上通过适配器光圈焦距的调节,能给主任医师显示出更加完美了解手术中病患位置的情况。景深(depth of field)是指在摄影机或其他的成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。我们伸手将五指张开,将自己的大拇指朝自己伸到眼前,此时你会发现你眼睛聚焦到拇指的时候,后面看不清的手指都虚化掉了,你所能看清楚的地方就是景深。
光学, 设计

光学内窥镜检查是治疗胃肠道 (GI) 恶性肿瘤的主要诊断和治疗工具。大多数胃肠道肿瘤起源于癌前病变;因此,改善癌前病变和早期癌症检测和诊断的技术创新在改善结果方面发挥着关键作用。在过去的几十年里,胃肠道内窥镜检查领域见证了巨大而集中的努力,以开发和转化准确、用户友好和微创的光学成像方式。从技术角度来看,现在有各种各样的新型光学技术可用于在宏观和微观尺度上探测光-组织相互作用的不同方面,补充白光内窥镜检查。这些新模式中的大多数已成功验证并转化为常规临床实践。在此,我们对用于胃肠道癌症筛查和监测的现有和有前途的新型光学内窥镜成像技术的现状进行了技术综述。我们总结了光-组织相互作用的基本原理、不同尺度下的成像性能,并强调了对临床适用性和有效性的了解。此外,我们讨论了最近发现和翻译的新型分子探针,这些探针有望增强内窥镜医师诊断高特异性胃肠道病变的能力。我们还回顾和讨论了基于人工智能的算法在实时提供决策支持方面的作用和潜在的临床整合。最后,我们提供了对未来技术发展及其改变内窥镜胃肠道癌症检测和诊断的潜力的看法。
光学, 内窥镜
光学内窥镜检查是治疗胃肠道 (GI) 恶性肿瘤的主要诊断和治疗工具。大多数胃肠道肿瘤起源于癌前病变;因此,改善癌前病变和早期癌症检测和诊断的技术创新在改善结果方面发挥着关键作用。在过去的几十年里,胃肠道内窥镜检查领域见证了巨大而集中的努力,以开发和转化准确、用户友好和微创的光学成像方式。从技术角度来看,现在有各种各样的新型光学技术可用于在宏观和微观尺度上探测光-组织相互作用的不同方面,补充白光内窥镜检查。这些新模式中的大多数已成功验证并转化为常规临床实践。在此,我们对用于胃肠道癌症筛查和监测的现有和有前途的新型光学内窥镜成像技术的现状进行了技术综述。我们总结了光-组织相互作用的基本原理、不同尺度下的成像性能,并强调了对临床适用性和有效性的了解。此外,我们讨论了最近发现和翻译的新型分子探针,这些探针有望增强内窥镜医师诊断高特异性胃肠道病变的能力。我们还回顾和讨论了基于人工智能的算法在实时提供决策支持方面的作用和潜在的临床整合。最后,我们提供了对未来技术发展及其改变内窥镜胃肠道癌症检测和诊断的潜力的看法。
光学, 内窥镜
影响设备

心血管疾病( cardiovascular disease,CVD) 是目前全球范围内导致人类死亡和致残的主要原因,精准诊断和风险分层对于优化其治疗策略至关重要。在此背景下,心血管影像学检查作为无创性评估手段,已成为临床决策的关键工具。
人工智能, 影像评估, 心血管
心血管疾病( cardiovascular disease,CVD) 是目前全球范围内导致人类死亡和致残的主要原因,精准诊断和风险分层对于优化其治疗策略至关重要。在此背景下,心血管影像学检查作为无创性评估手段,已成为临床决策的关键工具。
人工智能, 影像评估, 心血管

血管内超声(IVUS)是一种介入成像技术,采用特殊设计的成像导管,远端装配微型超声探头,近端连接超声主机。
原理, 成像, 结构, 血管内超声
血管内超声(IVUS)是一种介入成像技术,采用特殊设计的成像导管,远端装配微型超声探头,近端连接超声主机。
原理, 成像, 结构, 血管内超声

现代高功率激光器的新特性在于其需要通过光纤传输多种波长。由于易于安装和断开连接,光纤已成为传输激光的首选方式。此外,通过封闭式导管传输,激光能有效保护终端用户免受光线直射或眼部接触的风险。
光纤, 激光器
现代高功率激光器的新特性在于其需要通过光纤传输多种波长。由于易于安装和断开连接,光纤已成为传输激光的首选方式。此外,通过封闭式导管传输,激光能有效保护终端用户免受光线直射或眼部接触的风险。
光纤, 激光器

内窥镜泛指经各种管道进入人体,以观察人体内部状况的医疗仪器,集传统光学、人体工程学、精密机械、现代电子、数学、软件等于一体,而其检查称为内窥镜检(Endoscopy)或内镜检查(术)。
临床应用, 原理
内窥镜泛指经各种管道进入人体,以观察人体内部状况的医疗仪器,集传统光学、人体工程学、精密机械、现代电子、数学、软件等于一体,而其检查称为内窥镜检(Endoscopy)或内镜检查(术)。
临床应用, 原理